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Abstract

Genetic engineering of constructs to improve solubility or stability is a common approach, but it is
often unclear how to obtain improvements. When the domain composition of a target is poorly
understood, or if there are insufficient structure data to guide sited directed mutagenesis, long
iterative phases of subcloning or mutation and expression often prove unsuccessful despite much
effort. Random library approaches can offer a solution to this problem and involve construction of
large libraries of construct variants that are analysed via screens or selections for the desired
phenotype. Huge improvements in construct behaviour can be achieved rapidly with no
requirement for prior knowledge of the target. Here we review the development of these
experimental strategies and recent successes.

Introduction

Obtaining milligrams of well-behaving, monodisperse soluble protein is a common limiting
step in structural biology; this also applies to vaccinology, many biophysical methods and
high throughput screening. Recombinant proteins often express insolubly, as soluble
aggregates, may be proteolysed or are undetectable in cell extracts. A common strategy for
improving the expression of a problematic target is to modify the target gene sequence by i)
PCR subcloning at putative domain boundaries predicted from alignments of similar
sequences, or other information e.g. disorder predictions or deletion studies; ii) introduction
of stabilising or solubilising mutations by site-directed mutagenesis, usually guided by some
preexisting structural data. These two construct engineering approaches, combined with a
quick expression and purification test in E. coli, are the basic molecular biology tools of
structural biologists.
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The limitations of rational construct engineering are obvious to most people who have
attempted it. Subcloning of domains (or multi-domains) requires a priori the prediction of
domain locations, but furthermore that constructs that are well translated and folded in the
recombinant host. Domain boundaries are usually identified via alignment of similar
sequences; however some proteins show little or no similarity to any other known target.
Even when similar sequences are available, well designed constructs may still not yield
soluble protein, perhaps due to unmet requirements for binding partners, chaperones, redox
environments, or stabilising flanking sequences beyond the conserved domain cores.
Introduction of solubilising or stabilising point mutations is even more challenging and
requires pre-existing structural data e.g. similar structures or homology models. Most
significantly, the properties that influence solubility, stability and efficient folding are not
well understood, making their rational design a hit-and-miss affair.

Random library methods offer an alternative approach to identifying better behaving
constructs. A genetically diverse pool of gene variants is constructed from which improved
clones are identified via a screen or selection process (Fig. 1). This well established
workflow resembles evolution by natural selection and has been termed “directed evolution’
(also in vitro evolution) [1]. It has underpinned numerous impressive successes including
fully human antibodies by phage display used currently against a number of diseases [2],
DNA binding proteins with genome specificity [3,4] and enzymes with improved activity,
stability and substrate profiles used in industrial processes [5] and domestic products e.g.
laundry powder proteases [6]. Structural biology and protein engineering are closely related
disciplines; the former is used to design the input and analyse the output of the latter.
Recently, random library methods have been applied to the structural biology process itself
with advances in the experimental definition of well behaving soluble protein domains,
improved protein stability and consequent crystallisation likelihood, and improvement of
yield via more efficient folding pathways.

Features of random library strategies for improving protein quality

Random library approaches comprise a mutation strategy appropriate for the problem in
hand, and a screen or selective process powerful enough to isolate rare improved clones in a
vast background of neutral or detrimental mutants. The choice of mutation strategy is
critical: varying one or both construct termini is appropriate for domain identification
(analogous to PCR cloning), whilst optimisation of domain solubility or stability might be
best achieved by point mutagenesis. For the screen or selection, the phenotypes of solubility
and stability are generic and protein independent; in principle once established, these
technologies can be applied to many different unrelated targets. This is in contrast to
classical directed evolution (e.g. ligand binding or enzyme engineering) where it is normally
necessary to establish specific screens/selections for each system studied. To date, random
library methods have mostly been applied to protein production where screens/selections can
be been developed, with only limited application to crystallisation [7] and none to improving
diffraction data quality; here the low throughput nature of potential screens (crystallisation
trials, or testing crystals on an X-ray source) prevents analysis of a genetically diverse
mutant library at any useful throughput.
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Mutation strategies for improved protein expression

Libraries of unidirectionally truncated expression constructs can be generated using the 3’ to
5’ activity of exonuclease I11 on dsDNA that has first been cut to generate 5’ resistant and 3’
substrate overhangs [8,9]. By careful timing of reactions, linear distributions of fragment
sizes can be obtained over DNA lengths of at least 3 kb; this has been used on both single
and pooled targets e.g. a pooled viral ORFeome [10]. Strikingly, one study on a panel of
different human targets showed that short 5’ deletions were often sufficient to improve
protein solubility [9], perhaps through modification of problematic N-terminal leader
sequences or 5 mRNA structure. These libraries are relatively small, comprising a few
hundred to a few thousand constructs since the total diversity is defined by the gene length,
with one in three constructs cloned being in the correct reading frame.

Libraries of constructs varying at both termini are required if targeting internal domains.
These can be prepared by sequential exonuclease 111 truncations of a precloned target gene,
first at one end and then the other [11]. In this way, the insert orientation can be controlled
leading to one in nine constructs being in frame with flanking protein or peptide tags.
Similarly, dUTP can be incorporated by PCR amplification of the target gene, with
subsequent fragmentation by endonuclease V [12], or endonuclease 1V coupled to uracil-
DNA glycosylase [13]. Other methods for randomly fragmenting genes include physical
point sink shearing [14] and random primed PCR [15]. These latter methods generate
fragments that must be cloned with no control over insert orientation resulting in 1 in 18
clones being correctly oriented and in frame. These reading frame inefficiencies are usually
ignored; however genetic selections to eliminate incorrect reading frames have been
described including ORF-selector ESPRIT [16] based upon an earlier split intein technology
[17], or through insertion into dihydrofolate reductase (DHFR) [18].

The random point mutagenesis of a gene sequence can be achieved by plasmid amplification
in an E. coli mutator strain [19] or by error prone PCR [20], both of which introduce simple
point mutations at a tuneable density. In vitro recombination techniques such as the
staggered extension process (StEP) [21,22] or DNA shuffling [23] produce more efficient
libraries since they permit exchange of mutations between lineages of amplicons, simulating
the natural process of genetic recombination. Chimaeric genes can be generated by family
shuffling [24] of pooled, closely related sequences. These protocols are long established for
protein engineering applications; comparatively recent is the incorporation of controlled
sequence variants during gene synthesis, e.g. the Slonomics technology [25], which provides
the advantage of controlling the identity and frequency of amino acids at each position and
avoiding unwanted stop codons.

Screening and selection strategies

Library clones that express in-frame constructs (vide supra) can be further winnowed to
identify soluble, stable protein variants. Unstable variants can interfere with the folding (and
activity) of a fused ‘reporter protein’ domain. GFPs [18,26,27], are used as fused ‘folding
reporters’ to screen libraries of 10%-106 clones on plates or by FACS (Fig. 2). Soluble clones
may be selected from larger libraries (>107 clones) via fusion to antibiotic resistance
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proteins such as chloramphenicol acetyl transferase [28] or murine dihydrofolate reductase
[12,29] and plating on a selective growth medium. Unstable proteins or those with internal
ribosome binding sites can give false positives if only one tag is used. To overcome these
limitations, libraries can be inserted between two pieces of a reporter such as GFP [27], or
between a leader sequence (TAT, SRP, sec) and beta-lactamase where the marker phenotype
(fluorescence, ampicillin resistance) is only achieved when both ends are present. Reporter
protein fusions are convenient but can affect solubility due to passenger solubilisation
effects where the behaviour of the target is modified by the presence of a large soluble
fusion partner. This can be eliminated by using short peptide tag fusions instead. Proteins
tagged with the 15 amino acid GFP beta strand 11 can be detected by in vivo or in vitro
complementation with a truncated GFP form comprising beta strands 1-10 [30]. In the
ESPRIT method (Fig. 3), in vivo biotinylation of a 15 amino acid peptide appended to the C
terminus of truncated protein inserts is used as an indicator of solubility in a printed colony
array format. Simultaneous detection of an N-terminal hexahistidine tag indicates that
proteins are in frame and undegraded [8,31]. Physical screens test whether proteins can be
purified and bind to membranes or bead affinity media using small cultures [13,32] or
colonies on plates (CoFi blot method, [33]). Phage display has been used to screen for
protease resistance, solubility and capture [34] or by selective infectivity of the phage tip
[35]. The use of the TAT transport pathway should extend these methods to larger proteins
that fold in the cytoplasm [36].

Recent developments

Interest in protein complexes has driven the development of enabling technologies for
identifying suitable well behaving candidates for structural studies. In a proof-of-principle
demonstration of a variation of the combinatorial domain hunting (CDH) method of the
Domainex company termed CDH?, a bait protein was immobilised to resin using one tag
and co-expressed prey proteins binding to the bait were then detected using a second tag
[37]. In CoESPRIT, libraries of a truncated viral “prey” target were transformed into an E.
coli strain that coexpresses a human interacting “bait” with expression analysis in a printed
colony array format [38]. After solubility analysis of the prey, hits were purified and the
presence of interacting bait proteins determined using a bait-specific tag. In a similar
approach, Waldo & co-workers co-expressed hexahistidine-tagged bait and split-GFP tagged
prey proteins from E. coli on permeable membranes. Soluble fluorescent complexes were
captured on IMAC resin in an underlying agarose layer [39]. To tackle membrane proteins,
Nordlund & co-workers combined the CoFi blot with detergent solubilisation [40,41], while
others have used membrane protein-GFP fusions to screen expression, scale-up and
production [42,43]. Pliickthun & co-workers used FACS to measure labelled antagonist
binding to inner-membrane expressed GPCRs in permeabilised E. coli. GPCR stability was
dramatically improved and expression increased up to 50-fold, and variants with modified
substrate specificity were generated [44,45].

Notable case studies

Hart & co-workers used ESPRIT to identify a folded domain of influenza polymerase PB2
with specific cap binding activity. The X-ray structure with bound cap analogue m’GTP at
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2.3 A resolution revealed the mode of ligand binding [11]. Similarly, other domains were
discovered and crystallised with roles in viral host adaptation [46] and nuclear transport
[47]. All were novel folds and unpredicted from sequence. The terminase from HCMV was
also discovered and crystallised via ESPRIT [48], as was the bacterial phosphatase SpollE
[49,50]. Pedelacq et. al used a split GFP assay to identify several compact domains from
each module of human p85a.. X-ray quality crystals were also obtained for the acyl-
transferase, dehydratase, and enoyl-reductase domains of Mycobacterium tuberculosis PpsC
[18]. A better expressing and crystallisable form of MEK-1 kinase was obtained using CDH
[51]. Structures have been solved for several domains delineated using the GFP folding
assay including telomerase reverse transcriptase [52]; a new fold from the pore-targeting
domain of nucleoporin Nup98 [53]; an active GTP binding domain of P element transposase
precisely delineating the DNA-binding and dimerisation elements of the primary sequence
[54]. Dyson & co-workers used eukaryotic DHFR as a folding reporter to discover domains
clustering in the ETS module of the transcription factor Flil, as well as domains of Pecam1
[12]. The Winter lab used phage display to screen an E. coli genome fragment library and
identified 124 protease-resistant globular domains with unfolding energies AG,, ranging
from 3.8-6.6 kcal/mol. Boundaries correlated with bioinformatic predictions [34]. Seitz et. al
used the GFP reporter and engineered a stable version of the human glucocorticoid receptor
ligand-binding domain, an important drug target for the treatment of several diseases. A
four-point mutant increased thermal stability by more than 8°C and yield after expression in
E. coli by 26-fold. In all, the structures of 3 variants were solved at resolutions as high as 1.5
A [55]. The mammalian paraoxonases PON1 and PON3 were expressed in soluble form via
family shuffling of human, mouse, rat and rabbit homologues [56] leading eventually to a
structure of PON1 [57].

Future perspectives

As structural genomics matures, these versatile screening strategies are starting to bridge the
gap between structural biology and cellular biology. For example, split GFP can be used for
tracking pathogen effector proteins in host cells [58], mapping cell-cell contacts [59], and
viral/cell membrane fusion [60]. Future applications may include tagging membrane
proteins on either side of the cellular lumen. Domain screening technologies coupled with
deep sequencing will likely play increasingly important roles in antigen generation for phage
based antibody development and vaccinology [61]. One can expect hybrid approaches to
increasing protein stability of individual proteins and protein complexes combining
computational design to create ‘smart’ libraries towards stability or activity (Rosetta3, [62]),
in-house microfluidic gene synthesis [63,64] of corresponding constrained diversity DNA
libraries, and microfluidic screens or selections for protein stability and activity [65,66].
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Figure 1.

The logic of random library methods for structural biology. An initial library phase
comprises cycles of gene mutation by point or truncation mutagenesis protocols, and a
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phenotypic screening for solubility. Promising clones are isolated from the library and, after
validation with a small-scale test, are purified, characterised and crystallised.
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Figure 2.

Three major iterations of the GFP reporters are depicted: (A) So-called ‘GFP folding
reporters’ comprising C-terminal and insertion type fusions where misfolding of the fusion
protein (grey) results in misfolding of the fused GFP domain. The insertion type GFP
folding reporter uses a circular permutant GFP starting at amino acid 172, while test proteins
are inserted between the native GFP N and C termini. This topology reduces false positives
from internal start sites or unstable truncated proteins that may otherwise plague C-terminal
folding reporters. (B) Split GFP uses complementation of two pieces of GFP, GFP S11 tag
and ‘detector’ GFP 1-10, to signal if fusion is soluble. The GFP fragments spontaneously
assembly on if the GFP S11 tag is accessible.

Curr Opin Struct Biol. Author manuscript; available in PMC 2014 September 23.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Hart and Waldo

Page 13

1 5 +* P @ ’“‘Y“
g % Limited proteolysis

Natural proteolysis

i Rational modifications
—— | Crystallisation

1) library 2) DNA sequence 3) construct 4) protein
construction & analysis refinement analysis
screening
Figure 3.

In the ESPRIT method [8], construct libraries are synthesised using exonuclease 111 and
mung bean nuclease to truncate target genes unidirectionally or bidirectionally at one or both
termini respectively. A colony array screen of, typically, 28 thousand clones is performed
with fluorescent streptavidin to detect levels of in vivo C-terminal biotinylation of the target
as an indicator of solubility (green spots), and the presence of a N-terminal hexahistidine tag
(red spots). Constructs with both signals are tested in small scale expression trials and
sequenced to identify construct boundaries yielding soluble material. These constructs may
be used in structural studies directly, or may require further optimisation e.g. using limited
proteolysis to remove flexible termini. Figure adapted from a study on SpollE in which N-
terminal deletion screening yielded soluble protein [49] that, following further optimisation,
yielded a 2.6 A structure of the C-terminal phosphatase domain [50].
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