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Abstract

Genetic engineering of constructs to improve solubility or stability is a common approach, but it is

often unclear how to obtain improvements. When the domain composition of a target is poorly

understood, or if there are insufficient structure data to guide sited directed mutagenesis, long

iterative phases of subcloning or mutation and expression often prove unsuccessful despite much

effort. Random library approaches can offer a solution to this problem and involve construction of

large libraries of construct variants that are analysed via screens or selections for the desired

phenotype. Huge improvements in construct behaviour can be achieved rapidly with no

requirement for prior knowledge of the target. Here we review the development of these

experimental strategies and recent successes.

Introduction

Obtaining milligrams of well-behaving, monodisperse soluble protein is a common limiting

step in structural biology; this also applies to vaccinology, many biophysical methods and

high throughput screening. Recombinant proteins often express insolubly, as soluble

aggregates, may be proteolysed or are undetectable in cell extracts. A common strategy for

improving the expression of a problematic target is to modify the target gene sequence by i)

PCR subcloning at putative domain boundaries predicted from alignments of similar

sequences, or other information e.g. disorder predictions or deletion studies; ii) introduction

of stabilising or solubilising mutations by site-directed mutagenesis, usually guided by some

preexisting structural data. These two construct engineering approaches, combined with a

quick expression and purification test in E. coli, are the basic molecular biology tools of

structural biologists.
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The limitations of rational construct engineering are obvious to most people who have

attempted it. Subcloning of domains (or multi-domains) requires a priori the prediction of

domain locations, but furthermore that constructs that are well translated and folded in the

recombinant host. Domain boundaries are usually identified via alignment of similar

sequences; however some proteins show little or no similarity to any other known target.

Even when similar sequences are available, well designed constructs may still not yield

soluble protein, perhaps due to unmet requirements for binding partners, chaperones, redox

environments, or stabilising flanking sequences beyond the conserved domain cores.

Introduction of solubilising or stabilising point mutations is even more challenging and

requires pre-existing structural data e.g. similar structures or homology models. Most

significantly, the properties that influence solubility, stability and efficient folding are not

well understood, making their rational design a hit-and-miss affair.

Random library methods offer an alternative approach to identifying better behaving

constructs. A genetically diverse pool of gene variants is constructed from which improved

clones are identified via a screen or selection process (Fig. 1). This well established

workflow resembles evolution by natural selection and has been termed ‘directed evolution’

(also in vitro evolution) [1]. It has underpinned numerous impressive successes including

fully human antibodies by phage display used currently against a number of diseases [2],

DNA binding proteins with genome specificity [3,4] and enzymes with improved activity,

stability and substrate profiles used in industrial processes [5] and domestic products e.g.

laundry powder proteases [6]. Structural biology and protein engineering are closely related

disciplines; the former is used to design the input and analyse the output of the latter.

Recently, random library methods have been applied to the structural biology process itself

with advances in the experimental definition of well behaving soluble protein domains,

improved protein stability and consequent crystallisation likelihood, and improvement of

yield via more efficient folding pathways.

Features of random library strategies for improving protein quality

Random library approaches comprise a mutation strategy appropriate for the problem in

hand, and a screen or selective process powerful enough to isolate rare improved clones in a

vast background of neutral or detrimental mutants. The choice of mutation strategy is

critical: varying one or both construct termini is appropriate for domain identification

(analogous to PCR cloning), whilst optimisation of domain solubility or stability might be

best achieved by point mutagenesis. For the screen or selection, the phenotypes of solubility

and stability are generic and protein independent; in principle once established, these

technologies can be applied to many different unrelated targets. This is in contrast to

classical directed evolution (e.g. ligand binding or enzyme engineering) where it is normally

necessary to establish specific screens/selections for each system studied. To date, random

library methods have mostly been applied to protein production where screens/selections can

be been developed, with only limited application to crystallisation [7] and none to improving

diffraction data quality; here the low throughput nature of potential screens (crystallisation

trials, or testing crystals on an X-ray source) prevents analysis of a genetically diverse

mutant library at any useful throughput.
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Mutation strategies for improved protein expression

Libraries of unidirectionally truncated expression constructs can be generated using the 3’ to

5’ activity of exonuclease III on dsDNA that has first been cut to generate 5’ resistant and 3’

substrate overhangs [8,9]. By careful timing of reactions, linear distributions of fragment

sizes can be obtained over DNA lengths of at least 3 kb; this has been used on both single

and pooled targets e.g. a pooled viral ORFeome [10]. Strikingly, one study on a panel of

different human targets showed that short 5’ deletions were often sufficient to improve

protein solubility [9], perhaps through modification of problematic N-terminal leader

sequences or 5’ mRNA structure. These libraries are relatively small, comprising a few

hundred to a few thousand constructs since the total diversity is defined by the gene length,

with one in three constructs cloned being in the correct reading frame.

Libraries of constructs varying at both termini are required if targeting internal domains.

These can be prepared by sequential exonuclease III truncations of a precloned target gene,

first at one end and then the other [11]. In this way, the insert orientation can be controlled

leading to one in nine constructs being in frame with flanking protein or peptide tags.

Similarly, dUTP can be incorporated by PCR amplification of the target gene, with

subsequent fragmentation by endonuclease V [12], or endonuclease IV coupled to uracil-

DNA glycosylase [13]. Other methods for randomly fragmenting genes include physical

point sink shearing [14] and random primed PCR [15]. These latter methods generate

fragments that must be cloned with no control over insert orientation resulting in 1 in 18

clones being correctly oriented and in frame. These reading frame inefficiencies are usually

ignored; however genetic selections to eliminate incorrect reading frames have been

described including ORF-selector ESPRIT [16] based upon an earlier split intein technology

[17], or through insertion into dihydrofolate reductase (DHFR) [18].

The random point mutagenesis of a gene sequence can be achieved by plasmid amplification

in an E. coli mutator strain [19] or by error prone PCR [20], both of which introduce simple

point mutations at a tuneable density. In vitro recombination techniques such as the

staggered extension process (StEP) [21,22] or DNA shuffling [23] produce more efficient

libraries since they permit exchange of mutations between lineages of amplicons, simulating

the natural process of genetic recombination. Chimaeric genes can be generated by family

shuffling [24] of pooled, closely related sequences. These protocols are long established for

protein engineering applications; comparatively recent is the incorporation of controlled

sequence variants during gene synthesis, e.g. the Slonomics technology [25], which provides

the advantage of controlling the identity and frequency of amino acids at each position and

avoiding unwanted stop codons.

Screening and selection strategies

Library clones that express in-frame constructs (vide supra) can be further winnowed to

identify soluble, stable protein variants. Unstable variants can interfere with the folding (and

activity) of a fused ‘reporter protein’ domain. GFPs [18,26,27], are used as fused ‘folding

reporters’ to screen libraries of 105-106 clones on plates or by FACS (Fig. 2). Soluble clones

may be selected from larger libraries (>107 clones) via fusion to antibiotic resistance
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proteins such as chloramphenicol acetyl transferase [28] or murine dihydrofolate reductase

[12,29] and plating on a selective growth medium. Unstable proteins or those with internal

ribosome binding sites can give false positives if only one tag is used. To overcome these

limitations, libraries can be inserted between two pieces of a reporter such as GFP [27], or

between a leader sequence (TAT, SRP, sec) and beta-lactamase where the marker phenotype

(fluorescence, ampicillin resistance) is only achieved when both ends are present. Reporter

protein fusions are convenient but can affect solubility due to passenger solubilisation

effects where the behaviour of the target is modified by the presence of a large soluble

fusion partner. This can be eliminated by using short peptide tag fusions instead. Proteins

tagged with the 15 amino acid GFP beta strand 11 can be detected by in vivo or in vitro

complementation with a truncated GFP form comprising beta strands 1-10 [30]. In the

ESPRIT method (Fig. 3), in vivo biotinylation of a 15 amino acid peptide appended to the C

terminus of truncated protein inserts is used as an indicator of solubility in a printed colony

array format. Simultaneous detection of an N-terminal hexahistidine tag indicates that

proteins are in frame and undegraded [8,31]. Physical screens test whether proteins can be

purified and bind to membranes or bead affinity media using small cultures [13,32] or

colonies on plates (CoFi blot method, [33]). Phage display has been used to screen for

protease resistance, solubility and capture [34] or by selective infectivity of the phage tip

[35]. The use of the TAT transport pathway should extend these methods to larger proteins

that fold in the cytoplasm [36].

Recent developments

Interest in protein complexes has driven the development of enabling technologies for

identifying suitable well behaving candidates for structural studies. In a proof-of-principle

demonstration of a variation of the combinatorial domain hunting (CDH) method of the

Domainex company termed CDH2, a bait protein was immobilised to resin using one tag

and co-expressed prey proteins binding to the bait were then detected using a second tag

[37]. In CoESPRIT, libraries of a truncated viral “prey” target were transformed into an E.

coli strain that coexpresses a human interacting “bait” with expression analysis in a printed

colony array format [38]. After solubility analysis of the prey, hits were purified and the

presence of interacting bait proteins determined using a bait-specific tag. In a similar

approach, Waldo & co-workers co-expressed hexahistidine-tagged bait and split-GFP tagged

prey proteins from E. coli on permeable membranes. Soluble fluorescent complexes were

captured on IMAC resin in an underlying agarose layer [39]. To tackle membrane proteins,

Nordlund & co-workers combined the CoFi blot with detergent solubilisation [40,41], while

others have used membrane protein-GFP fusions to screen expression, scale-up and

production [42,43]. Plückthun & co-workers used FACS to measure labelled antagonist

binding to inner-membrane expressed GPCRs in permeabilised E. coli. GPCR stability was

dramatically improved and expression increased up to 50-fold, and variants with modified

substrate specificity were generated [44,45].

Notable case studies

Hart & co-workers used ESPRIT to identify a folded domain of influenza polymerase PB2

with specific cap binding activity. The X-ray structure with bound cap analogue m7GTP at
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2.3 Å resolution revealed the mode of ligand binding [11]. Similarly, other domains were

discovered and crystallised with roles in viral host adaptation [46] and nuclear transport

[47]. All were novel folds and unpredicted from sequence. The terminase from HCMV was

also discovered and crystallised via ESPRIT [48], as was the bacterial phosphatase SpoIIE

[49,50]. Pedelacq et. al used a split GFP assay to identify several compact domains from

each module of human p85α. X-ray quality crystals were also obtained for the acyl-

transferase, dehydratase, and enoyl-reductase domains of Mycobacterium tuberculosis PpsC

[18]. A better expressing and crystallisable form of MEK-1 kinase was obtained using CDH

[51]. Structures have been solved for several domains delineated using the GFP folding

assay including telomerase reverse transcriptase [52]; a new fold from the pore-targeting

domain of nucleoporin Nup98 [53]; an active GTP binding domain of P element transposase

precisely delineating the DNA-binding and dimerisation elements of the primary sequence

[54]. Dyson & co-workers used eukaryotic DHFR as a folding reporter to discover domains

clustering in the ETS module of the transcription factor Fli1, as well as domains of Pecam1

[12]. The Winter lab used phage display to screen an E. coli genome fragment library and

identified 124 protease-resistant globular domains with unfolding energies ΔGu ranging

from 3.8-6.6 kcal/mol. Boundaries correlated with bioinformatic predictions [34]. Seitz et. al

used the GFP reporter and engineered a stable version of the human glucocorticoid receptor

ligand-binding domain, an important drug target for the treatment of several diseases. A

four-point mutant increased thermal stability by more than 8°C and yield after expression in

E. coli by 26-fold. In all, the structures of 3 variants were solved at resolutions as high as 1.5

Å [55]. The mammalian paraoxonases PON1 and PON3 were expressed in soluble form via

family shuffling of human, mouse, rat and rabbit homologues [56] leading eventually to a

structure of PON1 [57].

Future perspectives

As structural genomics matures, these versatile screening strategies are starting to bridge the

gap between structural biology and cellular biology. For example, split GFP can be used for

tracking pathogen effector proteins in host cells [58], mapping cell-cell contacts [59], and

viral/cell membrane fusion [60]. Future applications may include tagging membrane

proteins on either side of the cellular lumen. Domain screening technologies coupled with

deep sequencing will likely play increasingly important roles in antigen generation for phage

based antibody development and vaccinology [61]. One can expect hybrid approaches to

increasing protein stability of individual proteins and protein complexes combining

computational design to create ‘smart’ libraries towards stability or activity (Rosetta3, [62]),

in-house microfluidic gene synthesis [63,64] of corresponding constrained diversity DNA

libraries, and microfluidic screens or selections for protein stability and activity [65,66].
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Highlights

• Random library or directed evolution strategies in structural biology

• Mutation and screening for soluble protein expression

• Review of mutation and screening strategies with case studies
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Figure 1.
The logic of random library methods for structural biology. An initial library phase

comprises cycles of gene mutation by point or truncation mutagenesis protocols, and a

phenotypic screening for solubility. Promising clones are isolated from the library and, after

validation with a small-scale test, are purified, characterised and crystallised.
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Figure 2.
Three major iterations of the GFP reporters are depicted: (A) So-called ‘GFP folding

reporters’ comprising C-terminal and insertion type fusions where misfolding of the fusion

protein (grey) results in misfolding of the fused GFP domain. The insertion type GFP

folding reporter uses a circular permutant GFP starting at amino acid 172, while test proteins

are inserted between the native GFP N and C termini. This topology reduces false positives

from internal start sites or unstable truncated proteins that may otherwise plague C-terminal

folding reporters. (B) Split GFP uses complementation of two pieces of GFP, GFP S11 tag

and ‘detector’ GFP 1-10, to signal if fusion is soluble. The GFP fragments spontaneously

assembly on if the GFP S11 tag is accessible.
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Figure 3.
In the ESPRIT method [8], construct libraries are synthesised using exonuclease III and

mung bean nuclease to truncate target genes unidirectionally or bidirectionally at one or both

termini respectively. A colony array screen of, typically, 28 thousand clones is performed

with fluorescent streptavidin to detect levels of in vivo C-terminal biotinylation of the target

as an indicator of solubility (green spots), and the presence of a N-terminal hexahistidine tag

(red spots). Constructs with both signals are tested in small scale expression trials and

sequenced to identify construct boundaries yielding soluble material. These constructs may

be used in structural studies directly, or may require further optimisation e.g. using limited

proteolysis to remove flexible termini. Figure adapted from a study on SpoIIE in which N-

terminal deletion screening yielded soluble protein [49] that, following further optimisation,

yielded a 2.6 Å structure of the C-terminal phosphatase domain [50].
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